Часто возникают ситуации, в которых различные участники имеют не совпадающие между собой интересы. Математические модели и методы для исследования таких так называемых конфликтных ситуаций получили название теории игр [18].[ ...]
Эта запись означает, что игрок А выбирает одну из строк этой матрицы, а игрок В, не зная выбора А, выбирает один из столбцов матрицы. Число на пересечении выбранных строки и столбца определяет выигрыш первого игрока (соответственно проигрыш второго). Например, если А выбрал вторую строку, а В — третий столбец, то А вьшграл 5 единиц, а В их проиграл. Если же А выбрал третью строку, а В — втброй столбец, то А проиграл 2 единицы, а В их выиграл.[ ...]
Будем считать, что цель каждого из игроков состоит в максимизации наименьшего возможного выигрыша (соответственно минимизации наибольшего возможного проигрыша). Основной вопрос, возникающий в теории игр: существует ли наилучший способ игры у каждого из игроков, т. е. имеются ли у них оптимальные стратегии.[ ...]
Если оказывается, что для данной платежной матрицы минимум в какой-либо строке совпадает с максимумом в каком-либо столбце, то эти строка и столбец называются оптимальными, а их пересечение — седловой точкой платежной матрицы. Соответствующее число и будет ценой игры.[ ...]
При оптимальных смешанных стратегиях выигрыш А и соответственно проигрыш В в пять раз меньше максимально возможного при одиночной игре.[ ...]
Покажем теперь на двух Прийер с, как можно применить эти утверждения для вычисления цен и определения оптимальных стратегий для прямоугольных игр. В качестве таких примеров рассмотрим стратегии ловли на удочку и питания рыбы1.[ ...]
Модели, основанные на теории игр, представляют собой интересный, но пока еще недостаточно изученный подход к решению стратегических экологических задач. Разработка теории для более сложных игр с ненулевой суммой и игр многих лиц, где между игроками могут создаваться коалиции, должна найти эффективное применение в экологических проектах, связанных с планированием и оценкой различных воздействий на окружающую среду.[ ...]
Рисунки к данной главе:
График функции |