Поиск по сайту:


Краткий очерк важных для экологии концепций и терминов ядерной физики

Показана относительная проникающая способность я специфический ионизационный эффект. Это чисто качественная схема, совершенно не отражающая количественных соотношений. А. Источник излучения снаружи. Б. Источник излучения внутри.[ ...]

Некоторые другие типы излучения также представляют хотя бы косвенный интерес для эколога. Нейтроны — это крупные незаряженные частицы, которые сами по себе не вызывают ионизации, но, выбивая атомы из их стабильных состояний, создают наведенную радиоактивность в нерадиоактивных материалах или тканях, сквозь которые они проходят. При равном количестве поглощенной энергии «быстрые» нейтроны вызывают в 10, а «медленные» — в 5 раз большие поражения, чем Гамма-лучи. С нейтронным излучением можно встретиться вблизи реакторов и в местах ядерных взрывов, но, как указано выше, они играют главную роль при образовании радиоактивных веществ, которые затем широко распространяются в природе. Рентгеновские лучи представляют собой электромагнитное излучение, очень близкое гамма-лучам, но образующееся на внешних электронных оболочках, а не в ядре атома и не испускаемое радиоактивными веществами, рассеянными в окружающей среде. Так как действие рентгеновских и гамма-лучей одинаково и так как рентгеновские лучи легко получать на специальной установке, их удобно применять при экспериментальном изучении особей, популяций и даже небольших экосистем. Космические лучи — это излучение, приходящее к нам из космического пространства и состоящее из корпускулярной и электромагнитной компонент. Интенсивность космических лучей в биосфере мала, однако они представляют собой основную опасность при космическом путешествии (гл. 20). Космические лучи и ионизирующее излучение, испускаемое природными радиоактивными веществами, содержащимися в воде и почве, образуют так называемое фоновое излучение, к которому адаптирована ныне существующая биота. Возможно, что поток генов в биоте поддерживается благодаря наличию этого фонового излучения. В разных частях биосферы естественный фон различается в три-четыре раза. В этой главе мы сосредоточим внимание главным образом на искусственной радиоактивности, которая добавляется к фону.[ ...]

Для изучения радиационных явлений необходимы два типа измерений: 1) измерение количества радиоактивного вещества по числу происходящих распадов; 2) измерение дозы излучения в терминах поглощенной энергии, которая может вызвать ионизацию и повреждения.[ ...]

Другой важный аспект излучения — его доза — измеряется в разных шкалах. Наиболее удобной единицей для всех типов излучения служит рад. Один рад — это такая доза излучения, при которой на 1 г ткани поглощается 100 эрг энергии. Более старую единицу дозы — рентген (Р) — строго говоря, можно использовать только для гамма- и рентгеновских лучей. Однако, пока речь идет о воздействии на живые организмы, рад и рентген — почти одно и то же. В 1000 раз меньшие единицы, а именно миллирентген (мР) или миллирад (мрад), удобны для измерения тех уровней излучения, которые часто регистрируются в окружающей среде. Важно подчеркнуть, что рентген или рад — это единицы суммарной дозы. Доза излучения, полученная в единицу времени, называется интенсивностью дозы. Так, если организм получает 10 мР в час, то суммарная доза за 24 ч составит 240 мР, или 0,240 Р. Как мы увидим, очень важное значение имеет время, за которое организм получает данную дозу.[ ...]

Приборы, используемые для измерения ионизирующего излучения, состоят из двух основных частей: 1) детектора и 2) электронного счетчика. Для измерения бета-частиц обычно используются газовые счетчики, такие, как счетчик Гейгера, а для измерения гамма- и других типов излучения широко применяют твердые или жидкостные сцинтиляцион-ные счетчики (они содержат вещества, которые превращают невидимое излучение в видимое излучение, регистрируемое фотоэлектрической системой).[ ...]

Каждому химическому элементу соответствуют разные типы атомов, все они имеют несколько различное строение, некоторые из них радиоактивны, другие — нет. Эти варианты элементов называются изотопами. Например, существует несколько изотопов кислорода, несколько изотопов углерода и т. д. Радиоактивные изотопы нестабильны и при распаде превращаются в другие изотопы, испуская при этом излучение. Каждый радиоактивный изотоп характеризуется определенным числом— атомным весом и распадается с определенной скоростью. Эту скорость принято называть периодом полураспада. Некоторые радиоактивные изотопы, имеющие важное значение для экологии, перечислены в табл. 59. Можно видеть, что 45Са — это радиоактивный изотоп кальция; его атомный вес равен 45 и каждые 160 дней он теряет половину своей радиоактивности. Период полураспада — величина, постоянная для данного изотопа (т. е. внешние факторы не влияют на скорость разрушения); для разных радиоактивных изотопов величина его варьирует от нескольких секунд до многих лет. В общем крайне «короткожи-вущие» радионуклиды не представляют интереса для экологии.[ ...]

Как показывает табл. 59, с экологической точки зрения радиоактивные изотопы можно разбить на несколько довольно хорошо различимых групп. В группу А входят встречающиеся в природе радиоактивные изотопы, участвующие в создании фонового излучения. В группу Б входят изотопы элементов, являющихся существенными компонентами тканей животных и растений; они поэтому имеют большое значение в качестве меток при изучении метаболизма сообщества и как источники внутреннего облучения.В группу В входят продукты деления урана и некоторых других элементов; большинство этих элементов несущественны для метаболизма (за исключением иода-131). Однако элементы этой группы опасны, так как они в больших количествах образуются при ядерных взрывах, а также при управляемых ядерных реакциях при производстве электричества или других полезных форм энергии. Хотя большинство из этих изотопов не представляют собой существенные компоненты протоплазмы, они легко включаются в биогеохимические циклы, и многие из них, особенно нуклиды стронция и цезия, накапливаются в пищевых цепях (гл. 4, разд. 4). Обратите внимание, что многие изотопы группы В производят «дочерние изотопы» (изотопы, образующиеся при распаде другого изотопа), которые часто обладают большей энергией, чем исходные изотопы. Человек надеется со временем научиться использовать энергию ядерного синтеза, выделяемую в водородной бомбе, и заменить ею энергию ядерного деления, которая лежит сейчас в основе развития ядерной энергетики. При этом мы избавились бы от продуктов деления, но не решили бы проблем, создаваемых тритием (3Н) и наведенной радиоактивностью.[ ...]

Рисунки к данной главе:

Сравнение трех типов ионизирующего излучения, представляющих наибольший экологический интерес. Сравнение трех типов ионизирующего излучения, представляющих наибольший экологический интерес.
Вернуться к оглавлению