Поиск по сайту:


Экология — ее отношение к другим наукам и значение для человеческой цивилизации

Человек интересовался экологией с практической точки зрения с самых ранних периодов своей истории. В примитивном обществе каждый индивидуум, для того чтобы выжить, должен был иметь определенные знания об окружающей среде, о силах природы, о растениях и животных, которые его окружали. Фактически цивилизация возникла тогда, когда человек научился использовать огонь и другие средства, позволившие ему изменять среду своего обитания. И теперь, если человечество хочет сохранить свою цивилизацию, оно более чем когда-либо нуждается в достаточно полных знаниях об окружающей среде, поскольку основные «законы природы» действуют по-прежнему; рост населения и расширение возможностей воздействия на среду лишь изменили их относительное значение и усложнили зависимость от них человека.[ ...]

Подобно всем другим областям знания экология развивалась непрерывно, но неравномерно. Труды Гиппократа, Аристотеля и других древнегреческих философов содержат сведения явно экологического характера. Однако греки не знали слова «экология». Термин этот недавнего происхождения. Он был предложен немецким биологом Эрнстом Геккелем в 1869 г. Многие великие деятели «биологического Возрождения» (XVIII—XIX вв.) внесли свой вклад в эту область, хотя название «экология» долгое время не употреблялось. Например, Антон ван Левенгук, более известный как один из первых микроскрпистов начала XVIII в., был также пионером в изучении «пищевых цепей» и регулирования численности популяций (Эгертон, 1968) — двух важных разделов современной экологии. Как самостоятельная наука экология сформировалась приблизительно к 1900 г., но лишь в последнее десятилетие это слово приобрело особую популярность. В наши дни каждый остро осознает важность наук о среде для поддержания и повышения уровня современной цивилизации. Экология быстро становится отраслью науки, теснейшим образом связанной с повседневной жизнью каждого человека, будь то мужчина, женщина или ребенок.[ ...]

Фундаментальные (горизонтальные) н «таксономические (вертикальные) подразделения.[ ...]

Чтобы лучше понять предмет и задачи экологии, рассмотрим отношение этой последней к другим областям биологии и прочим «логиям». В современную эпоху специализации человеческой деятельности естественные связи между различными дисциплинами часто исчезают из нашего поля зрения вследствие обилия сведений в пределах каждой дисциплины (а иногда, как следует с сожалением признать, и вследствие шаблонного преподавания наук в учебных заведениях). Вместе с тем почти любую отрасль знаний можно определить слишком широко, так что предмет ее разрастется сверх всяких разумных пределов. Признанные «области» науки должны иметь признанные границы, пусть даже несколько условные и время от времени подверженные изменениям. Такой сдвиг границ и самого предмета исследований был особенно заметен как раз в экологии в связи с ростом общественного интереса к этой науке. Сейчас слово «экология» для многих означает «совокупность человека и окружающей среды». Но давайте вначале рассмотрим более традиционное, академическое положение экологии в семье наук.[ ...]

Вероятно, лучше всего можно определить содержание современной экологии исходя из концепции уровней организации, которые составляют своего рода «биологический спектр», как это показано на фиг. 2. Сообщество, популяция, организм, орган, клетка и ген — главные уровни организации жизни; на фиг. 2 они расположены в иерархическом порядке — от крупных систем к малым. Взаимодействие с физической средой (энергией и веществом) на каждом уровне обусловливает существование определенных функциональных систем. Под системой мы подразумеваем именно то, что словарь Уэбстера для студентов определяет как «упорядоченно взаимодействующие и взаимозависимые компоненты, образующие единое целое». Системы, содержащие живые компоненты (биологические системы, или биосистемы), можно выделять иа любом из уровней, представленных на фиг. 2, или на любом промежуточном уровне, удобном или полезном для исследования. Например, мы можем рассматривать не только системы генов, органов и т. д., но также системы паразит — хозяин, что соответствует промежуточному уровню между популяцией и сообществом.[ ...]

Экология изучает преимущественно ге системы, которые расположены в правой части приведенного спектра, т. е. системы выше уровня организмов. Термин популяция (от лат. populus — народ), первоначально применявшийся для обозначения групп людей, в экологии приобрел более широкое значение и относится к группе особей любого вида организмов. Точно так же сообщество в экологическом смысле (иногда говорят «биотическое сообщество») включает все популяции, занимающие данную площадь. Сообщество и неживая среда функционируют совместно как экологическая система, или экосистема. Сообществу и экосистеме приблизительно соответствуют часто употребляемые в европейской и русской литературе термины биоценоз и биогеоценоз1. Самая крупная и наиболее близкая к идеалу «самообеспечения» биологическая система, известная нам, — это биосфера, или экосфера; она включает все живые организмы Земли, находящиеся во взаимодействии с физической средой Земли, в результате чего эта система, через которую проходит поток энергии от мощного ее источника, Солнца, и которая переизлучает в космическое пространство, поддерживается в состоянии устойчивого равновесия.[ ...]

Экология изучает уровни, находящиеся в правой организмов до экосистем.[ ...]

Одна из причин, почему уровни организации изображены в виде горизонтального, а не вертикального ряда, состоит в том, что ни один из них в общем нельзя считать более или менее важным или более или менее заслуживающим изучения, чем какой-либо другой уровень. В этом ряду при движении слева направо некоторые признаки, несомненно, становятся более сложными и более изменчивыми, однако часто упускают из виду, что другие свойства при переходе от малых систем к большим становятся менее сложными и менее изменчивыми. Поскольку гомеостатические механизмы действуют на протяжении всего ряда, функционирование более мелких единиц внутри более крупных характеризуется определенной степенью интеграции. Например, интенсивность фотосинтеза лесного сообщества изменяется в меньшей степени, чем интенсивность фотосинтеза отдельных листьев или деревьев внутри сообщества, поскольку снижение фотосинтеза у одного члена сообщества может уравновешиваться его усилением у другого и наоборот. Что касается вопроса о специфических признаках, характерных для каждого уровня в отдельности, то нет оснований считать, что какой-то уровень легче или труднее поддается количественному изучению, чем другие. Например, рост и метаболизм можно успешно изучать на клеточном уровне и на уровне экосистемы, используя различные методы и единицы измерения, соответствующие разным порядкам величин. Кроме того, данные, полученные при изучении какого-либо уровня, помогают изучению другого уровня, но с их помощью никогда нельзя полностью объяснить явления, происходящие на этом другом уровне. Это важное положение, поскольку иногда приходится слышать утверждение, что бесполезно пытаться работать со сложными объектами типа популяций и сообществ, пока полностью не изучены более мелкие единицы. Если довести эту мысль до логического конца, то в таком случае все биологи должны были бы сосредоточить внимание на одном уровне, например клеточном, впредь до разрешения всех связанных с ним проблем и лишь затем переходить к изучению тканей и органов. Такая точка зрения была широко распространена среди биологов до тех пор, пока они не убедились в том, что каждый уровень имеет особенности, которые лишь частично можно объяснить, исходя из особенностей нижележащего уровня. Иными словами, не все свойства более высокого уровня можно предсказать, зная только характеристики, относящиеся к более низкому уровню. Точно так же как нельзя предсказать свойства воды только по свойствам водорода и кислорода, нельзя предсказать и свойства экосистемы на основании сведений об отдельных популяциях; изучать нужно и лес (целое) и деревья (части этого целого).[ ...]

Фейблмен (1954) назвал это важное обобщение «теорией уровней интеграции».[ ...]

Итак, для эколога особенно важен принцип функциональной интеграции, согласно которому при усложнении структуры возникают дополнительные свойства. Технические достижения последнего десятилетия позволили осуществить количественные исследования таких больших и сложных систем, какими являются экосистемы. Инструментами такого исследования могут служить изотопные, спектрометрические, колориметрические, хроматографические и другие химические методы, методы дистанционных измерений и автоматического контроля, математическое моделирование, вычислительная техника. Таким образом, техника— обоюдоострое оружие: она может быть средством познания единства человека и природы и средством разрушения этого единства.[ ...]

Рисунки к данной главе:

Слоеный пирог» биологии. Слоеный пирог» биологии.
Спектр уровней организации. Спектр уровней организации.
Вернуться к оглавлению