Поиск по сайту:


Энергетический обмен

Первоисточником энергии в природе является Солнце, но его энергию могут использовать только фотосинтетики, а все остальные организмы могут получать эту энергию лишь опосредовано, т. е. в форме энергии химических связей между атомами органических соединений. При разрыве связей энергия может высвобождаться, но чаще всего она временно запасается в виде особо богатого энергией нуклеотида — аденозинтрифос-форной кислоты (АТФ) — используемого клеткой для всех дальнейших процессов жизнедеятельности.[ ...]

Главная роль в энергетическом обмене клеток животных принадлежит дыхательному обмену или клеточному дыханию. Клеточное дыхание представляет собой процесс, в котором высокомолекулярные органические высокоэнергетические соединения, окисляясь распадаются на низкомолекулярные или неорганические соединения, бедные энергией. При окислении с участием кислорода дыхание называют аэробным, а без его участия — анаэробным.[ ...]

Процесс потребления кислорода из среды обитания и возвращения в эту среду диоксида углерода называется газообменом организма с окружающей средой. Это иной процесс, отличный от клеточного дыхания; путать их нельзя.[ ...]

Более половины энергии, ежедневно расходуемой человеком, затрачивается на мышечную работу. Запасы одних только углеводов могут удовлетворить энергетические потребности нашего организма в течение примерно 12 ч, тогда как человек среднего телосложения может обходиться без пищи, по крайней мере, в течение шести недель.[ ...]

Животным, впадающим в зимнюю спячку и снижающим скорость метаболизма, накопленных летом запасов жира хватает на долгие месяцы. Последовательность расходования высокомолекулярных соединений в организме (на примере человека, рис. 2.3) следующая: прежде всего углеводы, затем жиры (у животных) или масла (у растений), и в последнюю очередь белки.[ ...]

Структура строения аде-нозинфосфатов и схема процессов, протекающих при энергетическом обмене, показаны на рис. 2.4, где знаком « » обозначены так называемые «богатые энергией» связи. При отщеплении от АДФ еще одной фосфатной группы образуется аденозинмонофос-фат (АМФ).[ ...]

Энергетический обмен клетки осуществляется в три этапа.[ ...]

Подготовительный этап — сложные органические соединения распадаются на более простые: белки на аминокислоты, полисахариды на моносахариды и т. п.[ ...]

Этап неполного окисления (анаэробное дыхание или брожение). Неполному окислению могут подвергаться глюкоза, жирные кислоты, аминокислоты. При этом главным источником энергии в клетке является глюкоза. При бескислородном окислении одной молекулы глюкозы (процесс гликолиза) из двух молекул АДФ образуются две молекулы АТФ. В процессе гликолиза для нужд клетки извлекается не более 10% энергии.[ ...]

Запас АТФ в клетке невелик. Так, в мышце запаса АТФ хватает на 20—30 сокращений. Для нескольких тысяч сокращений и работы мышцы часами необходим непрерывный синтез АТФ. Один из способов образования АТФ в клетке заключается в переносе под действием ферментов высокоэнергетической фосфатной группы от какой-нибудь другой молекулы (например от дифосфоглицерата) на АДФ.[ ...]

Рисунки к данной главе:

Расходование запасов питательных веществ при голодании (по П. Кэмпу, К. Армсу) Расходование запасов питательных веществ при голодании (по П. Кэмпу, К. Армсу)
Структуры АТФ и АДФ (а), гидролиз АТФ (б) и рефосфорирова-ние АДФ в результате дыхательной активности (в) Структуры АТФ и АДФ (а), гидролиз АТФ (б) и рефосфорирова-ние АДФ в результате дыхательной активности (в)
Вернуться к оглавлению