Движущей силой процесса сорбции из водных растворов является градиент химического потенциала сорбата. По достижении равенства химических потенциалов последнего в объеме раствора и в сорбенте наступает химическое равновесие. Лимитирующее влияние на скорость сорбции оказывают подвод сорбируемого вещества к зерну сорбента (внешний массоперенос) и перемещение его молекул внутри зерна пористого сорбента (внутренняя диффузия). Обычно во всех аппаратах и сооружениях сорбционной очистки воды путем турбулизации потоков и интенсивного подвода новых порций воды снимаются внешнедиффузионные ограничения, а единственной стадией, лимитирующей кинетику, является перенос вещества в транспортных порах, равномерно распределенных по всему объему зерна сорбента. Собственно акт сорбции — заполнение микропор — происходит столь быстро, что не влияет на кинетику процесса в целом [44, с. 36].[ ...]
На скорость сорбции могут оказывать влияние примеси в сорбенте. Так, наличие металлов на поверхности АУ, не увеличивая Гр, приводит к росту дТ/дт.[ ...]
Изучение динамики сорбции позволяет найти основные расчетные параметры систем сорбционной очистки воды: эффективность; длину зоны массопередачи и скорость ее движения; время работы адсорберов.[ ...]
Здесь V — фиктивная скорость фильтрования; А0 — равновесная динамическая емкость сорбента при С0; е —норозность слоя адсорбента.[ ...]
Все приведенное выше относилось к динамике сорбции из водных растворов индивидуальных загрязняющих веществ или таких многокомпонентных смесей, сорбционные свойства которых могут аппроксимироваться одним (условным) веществом. Кроме того, условием применения рассмотренных математических моделей является выпуклая форма изотермы: лишь в этом случае можно рассчитать длину зоны массопереноса. К сожалению, далеко не во всех случаях сорбционной очистки воды указанные условия выполнимы.[ ...]
Вернуться к оглавлению