Поиск по сайту:


Жизнь как термодинамический процесс

Химические превращения в природе и все биологические процессы в экосистемах подчиняются законам термодинамики. Согласно первому закону, называемому законом сохранения энергии, для любого химического процесса общая энергия в замкнутой системе всегда остается постоянной.[ ...]

Энергия не создается заново и никуда не исчезает. Свет как одна из форм энергии может быть превращен в работу, теплоту или потенциальную энергию химических веществ пищи. Из этого следует, что если какая-либо система (как неживая, так и живая) получает или затрачивает энергию, то такое же количество энергии должно быть изъято из окружающей ее среды. Энергия может лишь перераспределяться либо переходить в другую форму в зависимости от ситуации, но при этом она не может возникнуть ниоткуда или бесследно исчезнуть.[ ...]

Согласно второму закону термодинамики, называемому законом энтропии, процессы, связанные с превращением энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную (деградирует). И действительно, теплота не передается самопроизвольно от более холодного тела к более горячему (хотя первый закон такой переход не запрещает!). В природе масса примеров однонаправленных процессов: газы перемешиваются в сосуде, но сами не разделяются; кусок сахара растворяется в воде, но не выделяется обратно в виде куска.[ ...]

Мерой количества связанной энергии, которая становится недоступной для использования, является энтропия1 (от греч. еп — в, внутрь, Ьгорё — поворот, превращение). В замкнутых системах энтропия (5) не может убывать; ее изменение (Ав) или равно нулю (при обратимых процессах) или больше нуля (при необратимых процессах). Система и ее окружение, предоставленные сами себе, стремятся к состоянию максимальной энтропии (неупорядоченности); таким образом, самопроизвольные процессы идут в сторону увеличения беспорядка. Второй закон термодинамики можно сформулировать иначе: поскольку некоторая часть энергии всегда рассеивается в виде не доступных для использования тепловых потерь энергии, эффективность превращения энергии света в потенциальную энергию химических соединений всегда меньше 100% .[ ...]

Согласно третьему закону термодинамики, при стремлении абсолютной температуры простых кристаллических тел к нулю абсолютное значение их энтропии также стремится к нулю.[ ...]

Энергия характеризуется не только ее количеством, но и качеством. Чем более «концентрирован» энергетический поток, тем выше его качество — способность превращаться в другую форму энергии (или соотношение части энергии, способной сконцентрироваться, и рассеиваемой части энергии). В пищевой цепи и цепи получения электроэнергии (рис. 6.9), включающей этап фоссилизации1, количество энергии всегда уменьшается, а ее качество — увеличивается.[ ...]

Все разнообразие проявлений жизни сопровождается превращениями энергии без ее возникновения или исчезновения. Суть жизни состоит в непрерывной последовательности таких изменений, как рост, самовоспроизведение и синтез сложных химических соединений.[ ...]

Экология, по сути, изучает способы превращения энергии внутри экосистем.[ ...]

Внутри Солнца происходят термоядерные реакции (аналогичные реакции протекают при взрыве водородной бомбы). Энергия этих реакций переходит в энергию света, т. е. энергию квантов излучения, испускаемого Солнцем.[ ...]

Из Космоса на Землю (к верхней границе атмосферы) поступает солнечный свет с энергией 5 МДж-м 2-ч 1 (1360 Вт • м-2, или 2 кал • см-2 • мин-1 — солнечная постоянная), создавая освещенность 140 ООО лк. Однако при прохождении через атмосферу он становится слабее. Попадая на почву, воду и прочие компоненты косной природы (табл. 6.2), солнечный свет нагревает их и таким образом преобразуется в теплоту, рассеивающуюся в конце концов в космическом пространстве.[ ...]

Вернуться к оглавлению