Поиск по сайту:


Действие шума на человека и окружающую среду

Среди основных чувств человека слух и зрение играют важнейшую роль---они. позволяют человеку владеть звуковыми и зрительными информационными полями.[ ...]

Насыщение окружающего пространства шумами повышенной интенсивности может привести к искажению звуковой информации и нарушению слуховой активности человека.[ ...]

В настоящее время достаточно хорошо изучены процессы доведения звуковых колебаний воздушной среды до чувствительных окончаний слуховых волокон нервной системы. В значительно меньшей степени исследованы процессы преобразования физических колебаний в звуковые образы или ощущения в нервной системе. Известно, что в ней акустический сигнал преобразуется в электрический, и в результате сложного взаимодействия в сфере нервной деятельности создается звуковой образ, адекватный реальному.[ ...]

Рычажная система «молоточек-наковаленка выполняет роль трансформатора колебаний барабанной перепонки, повышая звуковое давление на мембране овального окна для наибольшей отдачи энергии из воздушной среды среднего уха, сообщающегося с внешней средой через носоглотку 8, в область внутреннего уха 7, заполненную несжимающейся жидкостью — лимфой.[ ...]

Процесс получения звуковой информации из окружающей среды, ее преобразования по цепи «энергия акустической волны —> механическая энергия —> энергия нервных импульсов» завершается во внутреннем ухе. Структура внутреннего уха представляет собой сужающуюся к вершине трубку, свернутую в 2,5 витка в виде улитки, к которой примыкают каналы вестибулярного аппарата в виде трех колец 9. На рис. 5.11 для пояснения основных механизмов звукопе-редачи все это показано схематически, и улитка дана в развернутом виде. Мембрана круглого окна И выполняет вспомогательную функцию согласования внутреннего уха со средним. Весь рассматриваемый слуховой лабиринт ограничен костной перегородкой 10.[ ...]

По всей длине улитки внутреннего уха располагается основная мембрана 12 — анализатор акустического сигнала. Она представляет собой узкую ленту из гибких связок (рис. 5.11,6), расширяющуюся к вершине улитки. Вдоль основной мембраны проходят слои окончания нервных волокон, так называемого органа Корти, объединенных далее в жгут, по которому электрические нервные импульсы поступают в нервную систему и далее к слуховым областям мозга. Каждое нервное волокно представляет собой «волосковые» клетки, которые составляют массив из примерно 25 тыс. штук, имеющих до 100 «волосковых» окончаний (ресничных эпителиальных клеток). Акустические колебания вызывают деполяризацию мембран этих клеток, в результате чего возникают электрические импульсы, которые распространяются по нервным волокнам. Особенность биологических клеток состоит в том, что деполяризация их мембран возможна лишь с определенного уровня воздействия, что в случае акустического сигнала определяет порог слышимости.[ ...]

Действие внутреннего уха принято трактовать так. При колеба: ниях мембраны овального окна в жидкости внутреннего уха возникают упругие колебания, перемещающиеся вдоль основной мембраны от основания улитки к ее вершине. Структура основной мембраны аналогична системе резонаторов с резонансными частотами, локализованными по длине. Участки мембраны, расположенные у ее основания, реагируют на высокочастотные составляющие звуковых колебаний, средние участки — на среднечастотные, а участки, расположенные вблизи вершины, — на низкие частоты. Высокочастотные компоненты в лимфе быстро затухают и на удаленные от начала участки мембраны не воздействуют.[ ...]

Расположенные послойно в основной мембране «волосковые» клетки с сенсорными окончаниями в виде ресничных эпителиальных клеток вырабатывают электрические информационные сигналы в соответствии с коэффициентом передачи того участка, в котором они расположены. Обработка информации и преобразование ее в звуковые образы либо в простейшем случае — в воспринимаемые уровни звука происходит в слуховой ассоциативной зоне головного мозга. Здесь приходящие по нервным волокнам электрические сигналы сравниваются в блоках нейронной памяти с хранящимися «эталонами» звуковой информации, приобретенными человеком в процессе эволюции и его повседневной деятельности. Благодаря этому новые поступающие сигналы «узнаются».[ ...]

Способность человеческого уха анализировать звуки в широком диапазоне частот и интенсивностей можно проиллюстрировать тем, что самый громкий из слышимых звуков в 1012 ра3 интенсивнее самого слабого звука, регистрируемого человеческим ухом. Это один из совершеннейших измерительных приборов по динамическому диапазону измеряемых величин. Природа позаботилась о системах самозащиты слуха от повреждения. Одной из таких систем является сообщение пространства среднего уха с внешней средой через канал носоглотки 8 (рис. 5.11,6), что позволяет компенсировать интенсивные внешние воздействия акустических волн их подачей в противоположном направлении к барабанной перепонке через канал носоглотки. В ограничении больших интенсивностей участвуют мышцы среднего уха, ограничивающие перемещения молоточка и накова-ленки и тем самым снижающие интенсивность звука, поступающего во внутреннее ухо.[ ...]

При возникновении внешних звуковых раздражителей, превышающих 135... 140 дБ, элементы внутреннего уха вместо нормальных колебательных движений.вперед-назад начинают перемещаться из стороны в сторону, снижая перепад между давлением в улитке и проникающим из окружающей среды звуковым давлением. Любая система защиты имеет свои ограничения, поэтому избыточные шумы, действующие даже кратковременно, вызывают повреждения внутреннего уха, которые проявляются в лучшем случае временным смещением порога слышимости. Восстановительный период может длиться от нескольких минут до нескольких дней в зависимости от степени повреждения.[ ...]

Рисунки к данной главе:

Строение органа слуха (а), основная мембрана (б) Строение органа слуха (а), основная мембрана (б)
Оценка воздействия экспозиции шума на человека Оценка воздействия экспозиции шума на человека
Вернуться к оглавлению