Поиск по сайту:


Оксид углерода (СО), в отличие от диоксида углерода, не оказывает заметного влияния на потоки солнечной и тепловой радиации, но быстрый, в основном антропогенный, рост его содержания и значительная, как и у метана, роль в фотохимии озона и других МГ в тропосфере приводят к необходимости мониторинга СО в глобальной атмосфере и дальнейшего количественного исследования его атмосферного цикла. Значительные амплитуды сезонного изменения концентрации СО в тропосфере и различия в его содержании по полушариям связаны с малым временем жизни. Фазы сезонного изменения СО в тропосфере северного полушария почти одинаковы с таковыми для С02г однако максимум концентрации СО в конце зимы по сравнению с максимумом концентрации С02 в большей степени обусловлен сжиганием разных видов топлива, а минимум СО в конце лета считается связанным с деятельностью почвенных бактерий. Меньшая интенсивность этих источников и стоков в южном полушарии приводит к меньшему содержанию СО в тропосфере [38].

Оксид углерода (СО), в отличие от диоксида углерода, не оказывает заметного влияния на потоки солнечной и тепловой радиации, но быстрый, в основном антропогенный, рост его содержания и значительная, как и у метана, роль в фотохимии озона и других МГ в тропосфере приводят к необходимости мониторинга СО в глобальной атмосфере и дальнейшего количественного исследования его атмосферного цикла. Значительные амплитуды сезонного изменения концентрации СО в тропосфере и различия в его содержании по полушариям связаны с малым временем жизни. Фазы сезонного изменения СО в тропосфере северного полушария почти одинаковы с таковыми для С02г однако максимум концентрации СО в конце зимы по сравнению с максимумом концентрации С02 в большей степени обусловлен сжиганием разных видов топлива, а минимум СО в конце лета считается связанным с деятельностью почвенных бактерий. Меньшая интенсивность этих источников и стоков в южном полушарии приводит к меньшему содержанию СО в тропосфере [38].

Скачать страницу

[Выходные данные]