Поиск по сайту:


Синтез рациональной САУ может быть произведен лишь на основе длительных наблюдений за функционированием действующих очистных сооружений. Однако предпринимается немало попыток изучать структурно-функциональные свойства объекта с помощью математического моделирования. Можно отметить три основных направления, используемых в математическом моделировании технологических процессов вообще и рассматриваемых здесь процессов в частности. При аналитическом методе математическая модель строится на основании всестороннего исследования механизма процесса и составляется из уравнений материальных и теплового балансов для каждой фазы процесса, а также из уравнений, отражающих влияние гидродинамических факторов и кинетики реакций для каждого компонента. При этом необходимо учитывать коэффициенты диффузии, теплообмена, кинетические константы реакций и т. п. Для определения этих коэффициентов и констант требуется комплекс сложных и точных лабораторных и промышленных исследований. Математическая модель может быть синтезирована также экспериментально. Методами современной математической статистики находят формальное математическое описание процесса в условиях, когда теория процесса разработана недостаточно полно и нельзя дать более или менее точное аналитическое описание. Это новый, кибернетический подход к задаче: исследователь устанавливает функциональные связи между входными и выходными параметрами процесса, абстрагируясь от сложных и плохо изученных явлений, происходящих в процессе. Кроме того, существует третий метод составления математических описаний— экспериментально-аналитический, упрощающий задачу Определения численных значений параметров уравнений статики и динамики процесса. В этом случае исходные уравнения составляются на основе анализа процессов, наблюдаемых в объекте, а численные значения параметров этих уравнений определяются по экспериментальным данным, полученным непосредственно на объекте.

Синтез рациональной САУ может быть произведен лишь на основе длительных наблюдений за функционированием действующих очистных сооружений. Однако предпринимается немало попыток изучать структурно-функциональные свойства объекта с помощью математического моделирования. Можно отметить три основных направления, используемых в математическом моделировании технологических процессов вообще и рассматриваемых здесь процессов в частности. При аналитическом методе математическая модель строится на основании всестороннего исследования механизма процесса и составляется из уравнений материальных и теплового балансов для каждой фазы процесса, а также из уравнений, отражающих влияние гидродинамических факторов и кинетики реакций для каждого компонента. При этом необходимо учитывать коэффициенты диффузии, теплообмена, кинетические константы реакций и т. п. Для определения этих коэффициентов и констант требуется комплекс сложных и точных лабораторных и промышленных исследований. Математическая модель может быть синтезирована также экспериментально. Методами современной математической статистики находят формальное математическое описание процесса в условиях, когда теория процесса разработана недостаточно полно и нельзя дать более или менее точное аналитическое описание. Это новый, кибернетический подход к задаче: исследователь устанавливает функциональные связи между входными и выходными параметрами процесса, абстрагируясь от сложных и плохо изученных явлений, происходящих в процессе. Кроме того, существует третий метод составления математических описаний— экспериментально-аналитический, упрощающий задачу Определения численных значений параметров уравнений статики и динамики процесса. В этом случае исходные уравнения составляются на основе анализа процессов, наблюдаемых в объекте, а численные значения параметров этих уравнений определяются по экспериментальным данным, полученным непосредственно на объекте.

Скачать страницу

[Выходные данные]