Поиск по сайту:


Существование двойного электрического слоя на поверхности коллоидных частиц служит основным фактором устойчивости ионостабилизированных (лиофобных) золей. Как уже отмечалось, современная физическая теория устойчивости и коагуляции ионостабилизированных коллоидных систем основана на учете межмолекулярного притяжения и электростатического отталкивания, действующих между частицами золя. Согласно этой теории, коллоидная система устойчива в том случае, когда благодаря силам электростатического отталкивания (которые появляются при сближении коллоидных частиц и взаимном перекрытии их диффузных ионных атмосфер) возникает энергетический барьер, не позволяющий частицам подойти на расстояние, где преобладают силы молекулярного притяжения. Снижение энергетического барьера приводит к коагуляции системы. Полная энергия взаимодействия определяется алгебраической суммой энергии молекулярного притяжения и электростатического отталкивания.

Существование двойного электрического слоя на поверхности коллоидных частиц служит основным фактором устойчивости ионостабилизированных (лиофобных) золей. Как уже отмечалось, современная физическая теория устойчивости и коагуляции ионостабилизированных коллоидных систем основана на учете межмолекулярного притяжения и электростатического отталкивания, действующих между частицами золя. Согласно этой теории, коллоидная система устойчива в том случае, когда благодаря силам электростатического отталкивания (которые появляются при сближении коллоидных частиц и взаимном перекрытии их диффузных ионных атмосфер) возникает энергетический барьер, не позволяющий частицам подойти на расстояние, где преобладают силы молекулярного притяжения. Снижение энергетического барьера приводит к коагуляции системы. Полная энергия взаимодействия определяется алгебраической суммой энергии молекулярного притяжения и электростатического отталкивания.

Скачать страницу

[Выходные данные]