Поиск по сайту:


Организуя ступенчатое горение топлива и взаимодействие факельных горелок друг с другом так, чтобы оксиды азота из зоны В одной горелки попадали в зону А смежной, можно сократить зону эмиссии. Подобный эффект имеет место при подборе конструкции и оптимальном расположении горелок. Например, при фронтовом и подовом расположении горелок с коаксиальными форсунками, позволяющими сжигать топливо в тонкой конической струе, при полном смешении топлива с воздухом внутри горелки в атмосферу выбрасывается не более 300 мг/м3 оксидов азота (при сжигании сернистого мазута). При использовании японских горелок с рассеянным факелом, испытанных на паровых котлах силовых установок, выброс оксидов азота (расход мазута при двухступенчатом сжигании 4 т/ч) составлял 80 мг/м3 (паровое распыление) и 100 мг/м3 (механическое) против 170—180 мг/м3 при сжигании топлива в обычных горелках.

Организуя ступенчатое горение топлива и взаимодействие факельных горелок друг с другом так, чтобы оксиды азота из зоны В одной горелки попадали в зону А смежной, можно сократить зону эмиссии. Подобный эффект имеет место при подборе конструкции и оптимальном расположении горелок. Например, при фронтовом и подовом расположении горелок с коаксиальными форсунками, позволяющими сжигать топливо в тонкой конической струе, при полном смешении топлива с воздухом внутри горелки в атмосферу выбрасывается не более 300 мг/м3 оксидов азота (при сжигании сернистого мазута). При использовании японских горелок с рассеянным факелом, испытанных на паровых котлах силовых установок, выброс оксидов азота (расход мазута при двухступенчатом сжигании 4 т/ч) составлял 80 мг/м3 (паровое распыление) и 100 мг/м3 (механическое) против 170—180 мг/м3 при сжигании топлива в обычных горелках.

Скачать страницу

[Выходные данные]