Поиск по сайту:


В 1938 г. эти наблюдения были нами повторены с целью определения наименьшей толщины ватного фильтра, необходимой для поглощения всех аэроионов. В трубку поочередно вкладывались слегка спрессованные ватные диски диаметром 5 см и различной толщины (от 1,2 мм и более). Чтобы ватные пластинки не проваливались в конденсатор, внизу стеклянной трубки была вставлена стеклянная решетка (рис. 64). Воздух пропускался через прибор с помощью вытяжного вентилятора, соединенного с газовыми часами. Проницаемость аэроионов различной массы измерялась через вату. Результаты опытов сведены в табл. 44 и 45, из которых видно, что даже высокие концентрации легких аэроионов, полученных в воздухе путем истечения постоянного тока высокого напряжения с пучка острий, не пробивают себе путь через ватный фильтр. Вата слоем 4 мм пропускает менее 0,1 первоначального числа ионов, а слоем 12 мм поглощает все легкие аэроионы обеих полярностей (рис. 65).

В 1938 г. эти наблюдения были нами повторены с целью определения наименьшей толщины ватного фильтра, необходимой для поглощения всех аэроионов. В трубку поочередно вкладывались слегка спрессованные ватные диски диаметром 5 см и различной толщины (от 1,2 мм и более). Чтобы ватные пластинки не проваливались в конденсатор, внизу стеклянной трубки была вставлена стеклянная решетка (рис. 64). Воздух пропускался через прибор с помощью вытяжного вентилятора, соединенного с газовыми часами. Проницаемость аэроионов различной массы измерялась через вату. Результаты опытов сведены в табл. 44 и 45, из которых видно, что даже высокие концентрации легких аэроионов, полученных в воздухе путем истечения постоянного тока высокого напряжения с пучка острий, не пробивают себе путь через ватный фильтр. Вата слоем 4 мм пропускает менее 0,1 первоначального числа ионов, а слоем 12 мм поглощает все легкие аэроионы обеих полярностей (рис. 65).

Скачать страницу

[Выходные данные]